"Prescribed Fire Causes Wounding and Minor Tree Quality Degradation in Oak Forests"
This open access article was published January 25, 2023, in Forests. Access the article via the permanent web address (DOI). (https://doi.org/10.3390/f14020227)
Abstract
Despite the adaptation of many oak (Quercus) species to repeated surface fire, many public land managers in eastern North America resist using prescribed fire as a regeneration tool because of fire’s perceived negative impacts on timber values through the wounding of overstory trees. We retrospectively quantified fire-associated wounds in 139 oak-dominated stands across four national forests, each with a history of zero to six prescribed fires within the last 30 years. For trees > 25.4 cm dbh (n = 8093), fire-associated wounds within the first 3.67 m of height were categorized by type, measured for defect size and graded both accounting for and then ignoring the fire-associated wounds. Most fire-associated wounds (n = 3403) were catfaces (32.5%), seams (30.5%) or bark slough (30.1%), although catfaces had 2.1–6.4 times the average volume loss of any other wound type (9.90 ± 0.72 bd ft). Among the 2160 wounded trees sampled, 741 had multiple (≥2) wounds. Although 29.1% of all trees had at least one wound associated with prescribed fire, only 7.0% of those trees exhibited a reduction in tree grade. The likelihood of wounding was greater in stands receiving more prescribed burns, but unaffected by tree diameter for either thin- or thick-barked species. Considering both the likelihoods of wounding and grade reduction, white oak (Q. alba), chestnut oak (Q. montana), hickory (Carya sp.), shortleaf pine (Pinus echinata) and yellow-poplar (Liriodendron tulipifera) trees were more resistant to prescribed fire damage than other species. While our findings cannot be related directly to individual fire parameters, such as fireline intensity or fire duration, these results do provide estimates of the cumulative effects of multiple management-based prescribed fires that can be incorporated into fire effects models.
Keywords: fire ecology; Quercus; timber damage; fire effects;oak regeneration; tree grades
Citation
Saunders, Mike R., David P. Mann, Shannon Stanis, Jan K. Wiedenbeck, Daniel C. Dey, and Thomas M. Schuler. 2023. "Prescribed Fire Causes Wounding and Minor Tree Quality Degradation in Oak Forests" Forests 14, no. 2: 227.